
Journal of Computational Physics148,322–340 (1999)

Article ID jcph.1998.6112, available online at http://www.idealibrary.com on

A Large-Eddy Simulation Methodology in
Generalized Curvilinear Coordinates

Stephen. A. Jordan

Naval Undersea Warfare Center, Code 8322, Building 1246, Newport, Rhode Island 02841
E-mail: jordan@code 83.npt.nuwc.navy.mil

Received December 3, 1996; revised July 30, 1998

A generalized curvilinear coordinate formulation for the large-eddy simulation
(LES) that centers on the fact that two spatial operations are necessary to complete
the derivation is proposed. The recommended order of operations is to transform
the full resolution system prior to filtering. This sequence rationally directs the
filter operation along the curvilinear lines, thereby facilitating explicit evaluation
of the Leonard stress and its isolation from the relative errors associated with the
finite-difference approximations of the convective derivative. Representing the trans-
formation metrics as filtered quantities in the formulation is justified through their
numerical approximation. The generalized LES formulation was tested using direct
numerical simulation results of the circular cylinder near wake at Re= 3400. No
discernible differences were detected in the spectral energies of the turbulent fluctu-
ations by filtering in either the physical domain or the transformed space. However,
the latter filtering scheme was considerably cheaper. In the transformed space, high-
order numerical approximations are required for the convective derivatives to inhibit
overshadowing of the concurrent contributions by the Leonard stress at all wave-
numbers.

I. INTRODUCTION

The recent gain in popularity of the large-eddy simulation (LES) as a useful computational
fluid dynamics (CFD) approach to understanding turbulence rests principally on the rapid
advancements in supercomputer technology, as well as the encouraging developments in the
methodology itself. The LES philosophy is founded on resolving (computing) the large-scale
energy-dominate structures of the turbulent motion while modeling only the remaining fine-
scale eddies which tend toward homogeneous and isotropic characteristics. Demarcation
between the resolved and modeled turbulent scales is formally instituted by spatially filtering
the Navier–Stokes equations. In many finite-difference computations, however, this filter is
actually implemented implicitly through the grid’s resolution. The local filter width in these
simulations is equivalent to the local grid spacing. Those length scales lying beneath the
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grid’s resolution comprise the subgrid scales (SGS) of the turbulent field. To close the LES
formulation, a representative model is designed for the SGS field which usually embodies
most of the equilibrium range of the turbulent spectral energy.

Historically, most LES applications possess a certain commonality in that the respec-
tive topologies are geometrically simple. A few notable exceptions include Schumann and
Krettenauer [1], who simulated turbulent convection over a sinusoidal undulated terrain at
an infinite Rayleigh number, and Lund and Moin [2] (as well as Breuer and Rodi [3]), who
resolved the Reynolds stress statistics in the spatially evolving boundary layers along the
upper and lower walls of a concave-surface channel. In addition, a thorough numerical study
of the cylinder wake using a compressible flow form of the LES equations was completed
by Beaudan and Moin [4] at a moderate Reynolds number of 3900, based on the cylin-
der diameter. Although these exceptions required coordinate transformation of the basic
Cartesian form of the governing LES equations to accommodate a boundary-fitted grid to
the wall curvature, no formal treatment of the transformation operation nor the accompa-
nying metrics was addressed.

The present work aims to formally document a fundamental generalized curvilinear
coordinate formulation of the LES equations applicable for practicable geometries. Because
the derivation requires two spatial operations (the filter and the coordinate transformation),
the curvilinear form cannot be acquired in a unique manner. By contrast, an order of
operations does not arise when transforming a Reynolds-averaged Navier–Stokes (RANS)
set of equations (or, for that matter, a direct numerical simulation system of equations)
because only that single spatial operation in needed to arrive at the final generalized form.
The question to be answered in the present derivation is whether one should filter the full-
resolution equations before or after the coordinate transformation. This order especially
effects implementation of the SGS model and even more importantly mixed modeling
concepts where the Leonard term is evaluated explicitly.

Two procedures will be considered herein for obtaining a LES curvilinear coordinate
form. Each approach will operate on the Navier–Stokes (NS) equation system of an in-
compressible flow. The first procedure filters the Cartesian coordinate system prior to its
transformation. The order of operations respectively appears as

NS (Cartesian)⇒Filter ⇒ LES (Cartesian)⇒Transform⇒ LES (curvilinear).

This path is customarily taken when deriving a RANS type formulation but with the spatial
filter operation replaced by Reynolds time-averaging. An alternative progression to this
path involves reversing the order of operations. This second derivation proceeds as

NS (Cartesian)⇒Transform⇒NS (curvilinear)⇒Filter ⇒ LES (curvilinear)

such that the filter operation is now sensibly directed along the grid lines. To justify this
latter choice, satisfaction of the commutative property is required between the filtering and
the transformed form of the differentiation. Since the transformations occur before filter-
ing, the accompanying metrics are depicted as filtered quantities. This viewpoint requires
explanation and opposes the unfiltered representation of the first approach, where the order
of operations is reversed. The following work will also show that the second choice greatly
facilitates implementation of the final LES equations as well as explicit evaluation of the
Leonard term.

Mathematically, the two paths just mentioned differ only by their formal appearance
which is centered on the definition and evaluation of the transformation metrics. At the
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outset, the resultant formulations reveal very little regarding their intrinsic separation of
the large- and small-scale eddies. We must therefore understand the underlying mecha-
nism of filtering along the curvilinear lines in either the physical domain or transformed
space as well as interpret the physical significance of the transformation operation on the
resolved and modeled fields. Thus, the primary objectives of this work include; formulating
and interpreting a LES methodology suitable for incompressible flows in complex geome-
tries (Section 2), designing a numerical filter kernel for explicit evaluation of the Leonard
term (Section 3), and “a-priori” testing of the new LES formulation using a germane database
(Section 4). Finally, a few important closing comments are presented regarding the turbulent
eddy viscosity models commonly used for the SGS field (Section 5).

II. CURVILINEAR COORDINATE FORMULATION

To derive a generalized curvilinear coordinate formulation of LES equations for un-
steady incompressible turbulent flows, we begin with the Cartesian system comprising the
continuity and the Navier–Stokes equations. In nondimensional primitive variables, this
system appears as

Continuity
∂ui

∂xi
= 0 (1)

Momentum
∂ui

∂t
+ ∂u j ui

∂xj
=− ∂p

∂xj
+ 1

Re

∂2ui

∂xj ∂xj
, (2)

where Re symbolizes the Reynolds number andui (i = 1, 2, 3) andp represent the velocity
and pressure quantities, respectively. Solving these equations necessitates resolution of all
the spatial scales of the turbulent field which is classified as a direct numerical simulation
(DNS). One can now choose to either filter this DNS system, followed by a transformation
operation, or vice versa to acquire a LES formulation in generalized curvilinear coordinates.
The resultant equations differ only by their mathematical depiction of the metric quantities.
We will first examine the former choice which is hereinafter referred to as the “conventional
approach.”

A. Conventional Approach

Under the conventional approach one derives the basic governing equations of the flow
in Cartesian coordinates first, then transforms them to a curvilinear coordinate framework
(ξ k). This order of operations produces LES equations of the form

∂
√

gξ k
i ūi

∂ξ k
= 0 (3)

∂
√

gūi

∂t
+ ∂
√

gξ k
xj

ū j ūi

∂ξ k
=−∂

√
gξ k

xi
p̄

∂ξ k
+ ∂
√

gξ k
xi
τi j

∂ξ k
+ 1

Re

∂

∂ξ k

[√
ggk` ∂ūi

∂ξ`

]
. (4)

Each term in these equations is shown in its nondimensional strong conservation-law form
[5]. The coefficientsξ k

xj
(as well asgk`) and

√
g denote the contravariant metrics and the
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Jacobian of the transformation, respectively. Inasmuch as the filter operation is performed
prior to any coordinate transformations, only the flow quantities are treated as filtered
(designated by the overbar). Consequently, the types of filter functions are identical to
those commonly found in the literature for Cartesian coordinate systems [6]. Moreover,
special concern about satisfying the commutative property between the filtering and the
differentiation is not necessary. The SGS stress tensor (τi j ) is defined byτi j = ū j ūi − u j ui .
Its contravariant density form (τ k

i ) appears as

τ k
i =
√

gξ k
j (ū j ūi − u j ui ) (5)

which is directed along the curvilinear grid lines.
In the above transformed system, the varying filter width (1 f ) is assumed to be equal to

the local grid spacing (1g). Thus, the resolved and filtered turbulent scales are identical.
If 1 f >1g, filtering the convective term introduces additional terms representative of the
intermediate turbulent physics lying between the respective filtered and resolved fields. The
SGS stressτ k

i is replaced by the tensor

Tk
i = Lk

i − Qk
i , (6a)

where

Lk
i =
√

gξ k
xj
(ũi ũ j − ũi ũ j ) (6b)

Qk
i =
√

gξ k
xj
(u′i ũ j + ũi u′j + u′i u

′
j ). (6c)

Again, both tensorsLk
i and Qk

i are conservative transformations of their Cartesian coun-
terparts. The instantaneous velocities are decomposed into their resolved (ũi ) and mod-
eled (u′i ) elements with the overbar still denoting the filter operation. The Leonard term
(Lk

i ) is evaluated explicitly, whereas a model must be devised for the new SGS tensor
(Qk

i ) which now consists of the cross (u′i ũ j + ũi u′j ) and Reynolds stress (u′i u
′
j )

tensors.
There are many difficulties, however, when numerically implementing the above LES

system over boundary-fitted grids in complex geometries, including its assessment of the
approximation effects in wave-number space. First, the Leonard term would be cumbersome
to evaluate consistently along the curvilinear lines because the filter operation is formally
instituted in the Cartesian coordinate system. The filter kernel itself is improperly defined
with its width especially onerous to determine locally. Moreover, the spectral physics of the
Leonard term would be difficult to isolate from the neighboring attenuation of the convective
term caused by its finite difference approximation.

Second, the absense of the overbar for each metric coefficient implies that they are
evaluated exactly thereby vary monotonically. Although their analytical determination
is certainly possible for strongly controlled grids, the order of the leading term in the
truncation error of both the first- and second-order derivatives is actually reduced when
compared to that obtained through their difference approximation. This convincing ar-
gument was presented in-depth by Thompsonet al. [7] by simply examining the metric
coefficient of the transformed first-order derivative. They showed that the leading term
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of the respective truncation error reduces one order if the metric coefficient is evaluated
analytically.

Third, although one can argue that certain monotonic functions can be useful for mini-
mizing the truncation error, enforcing these distributions either locally or globally can be
difficult and nearly impossible under an adaptive gridding computation. Vinokur [8] con-
cluded that simple analytic evaluations of the metrics and Jacobian can improve the solution
accuracy only for isolated cases, but that numerical treatment is generally preferred for most
complex geometric applications.

To this end, the conventional approach can only be viewed as a useful LES methodology
for complex domains if one ignores these salient drawbacks associated with its implemen-
tation. Specifically, the filter operation is ill-defined which further complicates spectral
analysis of the results as well the numerical approximations. Furthermore, a comparatively
lower-order truncation error arises because the final formulation implies that the metric
coefficients are evaluated analytically rather than numerically.

B. Alternate Approach

An alternate sequence to the above involves reversing the order of operations which gives
the LES equations

∂
√

gξ k
i ui

∂ξ k
= 0 (7)

∂
√

gui
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+ ∂
√

gξ k
xj

u j ūi

∂ξ k
= ∂
√

gξ k
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p

∂ξ k
+ ∂τ

k
i

∂ξ k
+ 1

Re

∂

∂ξ k

[√
ggk`

∂ui

∂ξ`

]
. (8)

This second approach transforms the basic NS equations prior to their filtering. Conse-
quently, the filter operation is now formally administered along the grid lines, where the
independent spatial variables are the curvilinear coordinates. The filter operates on both
the flow quantity and the metric coefficient. It is important to note that the finite-difference
expressions used for approximating each metric coefficient are separate mechanisms of spa-
tial filtering which justify representing them as filtered quantities in the basic formulation.
For the moment, further discussion on this particular topic will be deferred until in the next
section.

The filter operation along the curvilinear grid lines can be expressed as

g(ξ k)φ(ξ k) =
∫

H(ξ k − ξ ′k)g(ξ ′k)φ(ξ ′k) dξ ′k, (9)

where H(ξ k − ξ ′k) is the homogeneous filtering kernel,g(ξ ′k) is the metric coefficient,
andφ(ξ ′k) is an arbitrary turbulent quantity. The coefficientg(ξ ′k) transformsφ(ξ ′k) to the
curvilinear coordinate system such that their product becomes the contravariant counterpart
of the quantity. Filtering can occur in either the physical domain or the computational space
with both applications having characteristic filter widths defined by the local metric coeffi-
cient (see Fig. 1). For instance, the grid-filter width along theη lines (η is constant) in the
physical domain is the local metric coefficient

√
g11. Commutation between filtering and

the finite difference approximations along nonuniform grid spacing was argued by Moin
and Kim [9]. They satisfied this property by treating their second-order central scheme as
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FIG. 1. Filtering along the curvilinear lines: (a) physical domain; (b) computational space.

a sectional box filter kernel applied locally at each computational point. However, Ghosal
and Moin [10] later noted that filtering an arbitrary quantity in the physical domain un-
der nonuniform spacing theoretically violates the commutative property between the filter
operation and the differentiation. In their analysis, the filter kernel was considered trans-
formed rather than the flow variable. They concluded that the associated error will not
contaminate the methodology, however, if the numerical approximations are no higher than
second order.

With the filter kernel herein defined in curvilinear coordinates, one can easily show that
the differentiation and the filtering commute for each transformed term in the computational
space. Consider, for example, the one-dimensional differentiation of (9) as

d[g(ξ)φ(ξ)]

dξ
=
∫

d[H(ξ − ξ ′)]
dξ

g(ξ ′)φ(ξ ′) dξ ′, (10)

where the filter width1= δξ = 1. Integration by parts will prove that

d[g(ξ)φ(ξ)]

dξ
= d[g(ξ)φ(ξ)]

dξ
+ H(ξ − α)g(α)φ(α)− H(ξ − β)g(β)φ(β), (11)

whereα andβ define the geometric limits of the space. Thus, filtering and the differentiation
commute in the computational space with the stipulation that the termsg(α)φ(α) and
g(β)φ(β) (or their difference) vanish at the boundaries.

The SGS stress field shown in Eq. (8) assumes that the filter operates implicitly through
the spatial resolution of the implemented grid (1 f =1g). As noted earlier, those scales
captured by the grid spacing hold all the resolved portion of the turbulence. This viewpoint
can be theoretically interpreted as applying a sharp cutoff filter along the curvilinear lines
in wave-number space such that the separation of the resolved and modeled fields becomes
distinct. The Leonard term is eliminated (ũi = ūi ) and the SGS field is defined as

τ k
i =
√

gξ k
j u j ūi −√gξ k

j u j ui . (12)

This field represents the fine-scale turbulent eddies along the curvilinear grid lines which
requires derivation of a physics-based model.

Before proceeding further, the contravariant velocity components can be introduced to
simplify the LES equations. Moreover, each metric coefficient can be declared filtered
and independent from its respective resolved turbulent quantity because the metrics should
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be conceived as smooth functions which are evaluated numerically and devoid of any
fluctuations. The resolved contravariant velocity components (Uk) are defined as

Ū k = √g ξ k
xj

u j (13)

because(
√

g)′ = (ξ k
xi
)′ = 0. Substituting this expression into Eqs. (7) and (8) gives

∂Uk

∂ξ k
= 0 (14)
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∂ūi
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]
, (15)

whereσ k
i is expressed as

σ k
i = Ukui −Ukui . (16)

This tensor has an identical form to its Cartesian analogue, but it requires an exchange
of variables to introduce the contravariant velocity components in the definition. Finally,
introduction of the contravariant velocity into the Leonard term yields

Lk
i = Ũ kũi − Ũ kũi (17)

which can be easily evaluated explicitly along the curvilinear lines in either the physical
domain or contravariant space using an appropriately designed filter.

III. CURVILINEAR LINE FILTERING

Although the filter operation is directed along the curvilinear grid lines, we can still argue
for the same kernel functions that are used with Cartesian coordinate systems, except now
the independent variables are the curvilinear coordinates. The most common functions are
those of the sharp cutoff, Gaussian, and box filters. We will first direct our attention to the
implicit filtering along the curvilinear lines that is associated with numerical evaluation
of the coefficient metrics, followed by application of a box or Gaussian filter for explicit
evaluations of the Leonard term.

A. Implicit Filtering of the Metric Coefficients

As noted earlier, if the transformation operation is performed prior to filtering, then
each metric coefficient should be considered as a filtered quantity. This representation is
justified herein due to the implicit filtering inherent in evaluating each coefficient by finite
difference schemes. For example, numerical approximation of the metric coefficientxξ by
second-order central differences carries a builtin box-type filter of unit widthδξ . The exact
relation between this differencing scheme and the box filter is

xξ ≈ x(ξ + 1)− x(ξ − 1)

2
= δ

δξ

{
1

2

∫ ξ+1

ξ−1
x(ξ) δξ

}
= δx̄

δξ
, (18)
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FIG. 2. Attenuation of the Fourier amplitudes of three stretching functions caused by finite difference ap-
proximations of the respective metric coefficients: (a) exponential; (b) hyperbolic sine; (c) hyperbolic tangent.

where the integral form of the box filter is shown in the parentheses. This filter will dampen
the spectral components of the dependent Cartesian coordinate(x) in wave-number space
(k), according to the response functionR(k)= sin(k)/k.

To illustrate the attenuation effect of the difference approximation in (18) on the metric
coefficients, we will examine three monotonic expressions which are most commonly used
to stretch the grid: the exponential, hyperbolic sine, and hyperbolic tangent functions [7]
(i.e., x(ξ)= eαξ ). Attenuation of the respective Fourier amplitudes of the physical coordi-
nate due to a two-point approximation of its derivativexξ is shown in Fig. 2 as curve (a); the
maximum scaled wave-number (k= 2πn/N) of each function isπ, N+ 1 is the number
of grid points, and 1≤ n≤ N/2. In this figure, the exact Fourier amplitudes (no filtering)
of each distribution are designated by curve (c). One can see that significant attenuation of
the spectral components begins at very low wave-numbers independent of the grid point
distribution. Atk=π/2, for example, each Fourier amplitude is damped by about 34%.
Curve (b) illustrates the damping effect caused by a fourth-order-accurate central scheme.
At a minor cost of additional CPU time, one can delay significant damping of the Fourier
amplitudes of the Cartesian coordinate until higher wave-numbers.

Higher order difference approximations and compact schemes will still further relax
realizable attenuation of the spectral amplitudes of the physical coordinate, but complete
elimination is not achievable. Thus, considering each metric coefficient as a filtered variable
in the alternate approach is justified, due to the implicit spatial filtering that occurs through
its numerical evaluation.

B. Explicit Filtering

When1 f >1g, the Leonard term of (17) arises in the alternate LES formulation that
must be evaluated explicitly in the computation. A filter can be designed for this purpose that
is executed in either the physical domain or the computational space. As previously noted,
filtering in the physical domain must be in accordance with a second-order discretization of
the governing terms to minimize the commutation error. Although the filter in the physical
domain is slightly more costly to apply (due to the nonuniformity of grid spacing), both
filter kernels have similar forms. The primary difference between the two filter operations
lies not in the filter definition itself but in the variable being filtered. In the computational
space, pre and posttransformations are required so that concerns arise about its relative CPU
cost and energy conservation properties. Furthermore, one should exert caution for highly
stretched grids because the filtered metric coefficient drastically dampens the contravariant



330 STEPHEN A. JORDAN

form of the filtered flow variable. In this section, two kernels are examined of the box filter
(one for each domain) that essentially implements volume-averaging [11]. These kernels
will then be tested in the following section to study their relative damping effects on the
turbulent spectral energy.

The basic kernel of the box filter has the conservative functional form

H(ξ k, ξ ′k) =
{

2/(1+i +1−i ), if 1−i /2< |ξ i − ξ ′k| < 1+i /2

0, otherwise
, (19)

where1i is the local filter width in the curvilinear directionξ k. Direct application of
this filter to an orthogonal boundary-fitted grid in the physical domain gives12= g11 and
12= g22 in the ξ andη directions, respectively (see Fig. 1). In the computational space,
1= 1 everywhere because the associated grid is completely uniform.

The analog of discrete volume averaging along a curvilinear line in the computational
space has the form

φ̄i = φi + S/2[φi+1+ φi−1− 2φi ], (20)

whereS is the filter coefficient. To ensure that this operation attenuates the Fourier elements
without a phase change, the filter coefficient is simply set to 1/2 [12]. Damping the high
wave-number spectral amplitudes of the metric coefficients using this operation depends
strongly on the local degree of stretching. To illustrate this point, consider the filter operation
rewritten as

φ̄i = φi + S

2

d2φ

dξ2
, (21)

where the second-order term is consistent with second-order discretization. Using the pre-
vious three monotonic functions, the filtered metric coefficientx̄ξ relative to its unfiltered
component becomes

x̄ξ = xξ (1+ β), (22)

where the smoothing parameterβ is defined as

β = Sq′′′/2q′ (23)

and the variableq denotes the distribution function (i.e.,q′ = xξ =αeαξ ). The relative de-
gree smoothing of the metric coefficients using these functions is listed in Table I for two
extreme cases of grid stretching. The first case restricts the grid stretching to minimize the
truncation error of standard second-order central differences applied to the metric coeffi-
cients. The respective smoothing is minimal for all three distributions, suggesting that the
resultant damping of the spectral amplitudes of the metric coefficients by the operation in
(20) is negligible. But this stretching restriction is unrealistic, and it is rarely encountered
throughout most boundary-fitted grids. The other case illustrates strong damping when the
subsequent grid point spacing is doubled. Although this stretching exceeds that allowable
by the truncation error of most finite difference schemes, the hyperbolic functions appear
least affected by filtering. These particular monotonic distributions have been identified as
the best overall choices for resolving bounded shear layers [8].
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TABLE I

Smoothing Effects of Box Filtering

Degree of grid stretching

(xξ )2/(xξ )1= 1+ (xξ )1 (xξ )2/(xξ )1= 2
Function
q(ξ/N) α β α β

exp(αξ/N)−1
expα− 1

0.42 O(10−2) 1.39 O(1)

sinh(αξ/N)
sinhα

1.24 O(10−1) 1.92 O(10−1)

1− tanh[α(1− ξ/N)]
tanhα

0.92 O(10−1) 1.26 O(10−1)

Note. (xξ )1 signifies local grid spacing at the first point,q is the distribution function,
andN is the total number of points (N= 2).

Most importantly, with strict control over excessive grid stretching the implications of
smoothing the metric coefficients (through explicit filtering) does not alter the basic physical
processes intrinsic in the LES computations. For instance, the Leonard term provides sub-
stantial assistance towards the forward scatter of energy from the finest resolved scales to the
coarsest subgrid eddies. For uniform grid spacing, spectral analyses of the energy cascade
process to quantify the Leonard term contributions is simply illustrated at the discrete wave-
numbers. This same process occurs along the curvilinear lines at modified wave-numbers
because the respective wave-lengths have been smoothed. Although we expect the differ-
ences to be minor, the extent depends largely on the degree of relative stretching. In view
of the turbulent energy, the spectral amplitudes are damped further by a factor proportional
to β.

In the physical domain, we can locally account for the nonuniform grid spacing by
introducing a weighting function (a),

φ̄i = φi + S/(1+ a)[φi+1+ aφi−1− (1+ a)φi ]. (24)

The magnitude of the corresponding response function|R(k)| is

|R(k)| = 1/2(1+ a)
{

[(1+ a)(1+ cosk)]2+ [(1− a) sink]2
}1/2

(25)

which dampens all Fourier components except at wave-numberk= 0. As illustrated in
Fig. 3, the effect of the weighting function is additional damping of the high wave-number
spectral components. Expanding this filter to three dimensions (3D) produces a 27-point
operator of the form

8̄i, j,k = 8i, j,k + D1[(1+ a)(8i, j+1,k + b8i, j−1,k)+ (1+ b)(8i+1, j,k + a8i, j−1,k)]

+ D2[(1+ a)(8i, j+1,k±1+ b8i, j−1,k±1)+ (1+ b)(8i+1, j,k±1+ a8i−1, j,k±1)]

+ D2[8i+1, j+1,k + a8i−1, j+1,k + b8i+1, j−1,k + ab8i−1, j−1,k)]

+ D3[8i+1, j+1,k±1+ a8i−1, j+1,k±1+ b8i+1, j−1,k±1+ ab8i−1, j−1,k±1)], (26)
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FIG. 3. Additional damping of a filtered quantity caused by local weighting.

where

D1 = S(1− S)2/2(1+ a)(1+ b)

D2 = S2(1− S)/2(1+ a)(1+ b)

D3 = S3/2(1+ a)(1+ b).

In the physical domain, the grid’s nonuniformity is embedded in the neighboring parameters
a=

√
g+11/g

−
11 andb=

√
g+22/g

−
22 in the ξ andη directions, respectively. In the comput-

ational space, these parameters are unit-valued. No weighting parameter reflects differences
in the spanwise spacing (z, ζ coordinates) because it is assumed to be uniform for the present
application.

Finally, one could easily select a Gaussian functional instead of the box kernel to explicitly
filter the contravariant components. When administered in the computational space, this
filter would have the same basic form as the one used by Leonard [6], but with unit filter
width. The Gaussian filter(Gk) in this application appears as

Gk =
(

6α2

π

)3/2

e−6[α(ξ k−ξ k′ )]2
. (27)

with α= 1/2. Like the box filter, attenuation of all the spectral elements of the transformed
variable will occur except at the corresponding zeroth wave-number. However, the energy
loss is generally less severe when compared directly to that resulting from the box filter.

IV. A PRIORI TESTING AND DISCUSSION

In this section,a priori tests are performed on a turbulent flow for the purpose of investi-
gating the relative damping of the spectral components in the proposed formulation and to
further decide which grid-filter is best suited for computing the Leonard term. These tests
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reflect DNS results collected of a circular cylinder wake at a subcritical Reynolds number
of 3400, based on the cylinder diameter (D). This particular Re was chosen because the
experimental flow visualization results of Wei and Smith [13] showed little development of
the fine-scale spanwise cellular deformation of the shed Strouhal vortices. This observation
selectively eased the spanwise resolution requirement of the structured grid. Statistically,
the Strouhal number (St ) of this flow is close to 0.2 [14];St = f U/D, whereU is the
freestream velocity andf is the shedding frequency of the primary vortices.

To acquire the DNS results of the cylinder wake, the fractional-step formulation of Jordan
and Ragab [15] was recast into generalized curvilinear coordinates. Their technique is an
extension of the DNS finite-difference scheme of Rai and Moin [16] to a semi-staggered
discretization molecule. Third-order upwind-biased differences approximate the convective
derivatives in the wake streamwise and transverse directions (ξ, η lines) to inhibit aliasing
and stabilize the computations in the downstream coarse grid regions near exit. The periodic
spanwise components are approximated by a fourth-order accurate compact scheme [17].
A Runge–Kutta procedure is used to time-advance the flow because of its strong numerical
stability even under inviscid conditions. The viscous terms are time-split by the Crank–
Nicolson scheme and spatially approximated by conservative finite-volume differences.
The overall accuracy of the solutions are second order in both space and time.

A. Grid Resolution and Boundary Conditions

For the turbulent cylinder wake, the finest dissipation scales occur within the vortex for-
mation region. To ensure sound resolution of this region, various curvilinear grids were
tested for increased refinement until the relative prediction of Kolmogorov’s microscale fell
below 2%. The final grid, along with the external boundary conditions, are given in Fig. 4.
An exponential interpolation function was used to uniformly cluster theη lines toward the
cylinder surface. The radialξ lines emanated normally from the cylinder periphery(s) and
were uniformly distributed circumferentially around the cylinder (1s≈ 0.008π). This con-
trol produced a single-valued covariant metric coefficient along these concentric lines which
further facilitated spectral analyses of the box and Gaussian filters. The spanwise resolution

FIG. 4. Grid line distribution, external boundaries, and flow conditions used for direct numerical simulation
of cylinder flow at Re= 3400.



334 STEPHEN A. JORDAN

FIG. 5. Comparison of the mean pressure coefficient from the DNS results to the experimental data reported
by Norberg [20].

was based on the empirical relationship of Manseyet al.[18] for the wavelength (λz) of the
three-dimensional disturbances;λz/D∼ 20Re−1/2. Using 64 points overπ length, the DNS
computation gave approximately seven points for resolving each disturbance. Moreover,
this spanwise resolution produced an accurate prediction of the base pressure coefficient
immediately downstream of the cylinder (see Fig. 5). Finally, the combined transformed
forms of the continuity and Euler equations were found satisfactory for applying a velocity
condition to exit the shed vortices with minimum distortion [19].

To illustrate the resolution capacity of the grid, phase-averaged results (at the shedding
frequency) of Kolmogorov’s microscale (ηd) are shown in Fig. 6. Homogeneous conditions

FIG. 6. Phase-averaged DNS results of Kolmogorov’s microscale in cylinder wake at Re= 3400; contours
increment by 0.0005.
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TABLE II

Kolmogorov Microscale and Grid Density

in Kolmogorov Units at x/D = 5

ηe
d/D× 103 ηn

d/D× 103 √
g11/η

e
d

√
g22/η

e
d 1z/ηe

d

9.84 14.53 13.74 7.38 4.99

Note.ηe
d/D is the experimental measurement at Re= 3900 [21]

scaled to Re= 3400 andηn
d/D is the DNS computation at Re= 3400.

were assumed in the spanwise direction. In the figure,ηd is scaled by the cylinder diameter
leading to the definition

ηd/D = (1/Re|S|)1/2, (28)

where|S| denotes the magnitude of the transformed resolvable strain-rate tensor. As ex-
pected, the finest turbulent scales were computed within the vortex formation region;
0.004<ηd/D< 0.01.Conversely, negligible turbulent levels are indicated outside the near
wake and in the upstream flow. The phase-averaged results clearly show an increase in
ηd/D toward the primary vortex cores. This result agrees qualitatively with our under-
standing that the shed vortices, which are turbulent, have viscous cores which tend towards
relaminarization.

Within the vortex street, specific evidence to demonstrate the grid’s ability to adequately
resolve the dissipation scales is shown in Table II. At 5 diameters downstream, the table lists
the mean experimental measurementηe

d/D [21] and the present DNS resultηn
d/D, along

with the local grid densities in experimental Kolmogorov units. Note that the experimental
measurements were taken at Re= 3900, but scaled to the DNS computation assuming
the wake turbulence is homogeneous and isotropic (∝Re3/4). In view of the resolution
requirements discussed by Reynolds [22], the grid densities atx/D= 5 were sufficient for
the DNS computation.

The near wake turbulent spectral energy versus streamwise wave-number (both in
Kolmogorov units) is shown in Fig. 7. Ong and Wallace [21] converted their experimental
frequency spectrum to the one-dimensional wave-number spectrum shown in the figure
using Taylor’s hypothesis. Although their profile is specifically taken from the LDV data
at x/D= 3.0 andy/D= 0.56, the curve is representative of the entire near-wake regime.
Superimposed on the profile are the present DNS results (corrected for the Re difference) at
r/D= 1.54 (formation region) andr/D= 5.0 (vortex street), as well as the LES results of
Beaudan and Moin [4] atx/D= 5.0. Unlike the LES results, neither DNS curve suggests a
dampening or dumping of turbulent energy at the higher resolved wavenumbers. This result
is probably attributed to the DNS grid supplying 61 and 36% finer spatial resolutions than
the LES grid at the downstream locations ofx/D= 1.54 andx/D= 5.0, respectively.

Finally, comparisons of the DNS turbulent statistics within the formation region(x/D=
1.54) and the vortex street(x/D= 4.0) to the PIV data of Lourenco and Shih [4] and
the LES results of Beaudan and Moin [4] are illustrated in Fig. 8. To account for the
difference in Reynolds numbers, both the turbulent means and intensities are scaled by
the local streamwise defect velocity (ud). In view of the measurement uncertainty [4], the
present DNS computations agree favorably with the observations. The transverse turbulent
intensities show closer agreement to the experimental evidence than the results of Beaudan
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FIG. 7. A comparison of turbulent energy spectrum versus wavenumber (both scaled in Kolmogorov units);
——— and - - - -,present DNS atr/D= 1.54 andr/D= 5.00, respectively;ssss, experimental data [21];wwwww,
LES results [4].

and Moin, who used fifth-order upwind-biasing for the convective derivatives coupled with
a dynamic SGS model. As previously noted, the present DNS results reflect computations
performed over a much finer grid. Given this agreement with the experimental evidence, the
present DNS results within the formation region were consider satisfactory for subsequent
analysis of the box filters and Leonard term of the alternate LES formulation.

B. Explicit Filtering Along the Curvilinear Lines

The higher CPU efficiency and energy-conservation of box filtering in the transformed
space, compared to the results from the physical domain filter (Eq. (26)), is illustrated in
Figs. 9a and 9b. Both profiles represent four phase-averaged datasets saved at the shed-
ding frequency, as well as spatial averages in the spanwise direction. The box filters were
applied along theη line corresponding to the radiusr/D∼= 0.69 with filter widths set at
twice the local grid spacing. This particular concentric line lies within the well-resolved
vortex formation region shown earlier. Its end conditions are periodic due to the branch-cut
implemented upstream. Both filters show substantial damping of the spectral energy(E22)

within the inertial subrange. Notice that no differences in the damped levels are observable
between each filtering scheme. The expanded profiles (Fig. 9b), that focus on the dissipation
range, further emphasize this point. Conversely, the computational cost of the physical do-
main application is nearly twice that of the computational space, even including the added
expense associated with the transformation operation. This comparatively lower efficiency
of the physical domain filter is attributed to its direct dependence on the local weighting
functions.
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FIG. 8. Comparisons of the streamwise and transverse mean velocity (u, v) and total Reynolds stresses (u′2v′2)
given by the present DNS results (solid lines) to experimental (circles and asterisks) and LES data (dashed lines)
reported in [21] and [4], respectively.

FIG. 9. Comparisons of the damping effects on the spectral energy caused by the explicit box filters designed
for application in the physical domain and computational space (Re= 3400).
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FIG. 10. Comparisons of the Fourier components of the filtered transformed Leonard stressL1
2 to the spectral

energy of the box filtered component̄U v̄; L2
1= Ū v̄ − Ū v̄: (a) box filteredL1

2, r/D= 0.69; (b) Gaussian filtered
L1

2, r/D= 0.69.

C. Leonard Term

When1 f >1g, one must ensure that the Leonard term is not masked by a low-order
approximation of the flux derivatives. In particular, if the convective flux is approximated
using three points, then the respective truncation error will be on the same order as the
Leonard term. Inasmuch as the recommended governing LES equations are placed in con-
servative form, explicit evaluation of the Leonard stress actually includes approximating
and filtering the metric coefficients. The correct procedure requires transforming each com-
ponent to the computational space prior to their filtering. The contributions of the Leonard
term relative to the convective flux depend on the smoothing and order-of-accuracy of the
respective metric coefficients.

In terms of an energy loss, box filtering the contravariant DNS components is equivalent
to a finite-volume second-order approximation of the transformed flux derivatives in the
LES computation with1 f =1LES= 21DNS. This analogy is strictly numerical, however,
because the resolved field will dynamically adjust itself to the SGS model over time. With
this understanding, we can still allow a careful look at the relative importance of Leonard
term. The procedure is similar to thea priori tests conducted by Liuet al. [23] and others
[24, 25] using a top-hat filter. For instance, Figs. 10a and 10b show the spectral compo-
nents of the Leonard termL1

2 using either a box or Gaussian filter relative to the resolved

component̃U ṽ; L1
2= Ũ ṽ−Ũ ṽ along concentric liner/D= 0.69. The associated metric co-

efficients of the contravariant velocity components were approximated to the second-order.
Both figures clearly show that a low-order scheme will prohibit any contributions from the
Leonard stress near the higher wave-number part of the spectrum. The choice of the filter
kernel does not seem to matter nor does the local grid spacing. Also, an improved fourth-
order approximation of the metric coefficients leads essentially to the same conclusion.
These results suggest that high-order finite difference schemes must be used for approxi-
mating the convective derivatives in the alternate LES formulation to indulge participation
of the Leonard stress near the higher range of resolved wave-numbers.

V. FINAL REMARKS

Difficult geometries are commonplace among most practical applications. Consequently,
to compute the respective turbulent physics one must utilize a generalized curvilinear
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coordinate system to steer the flow solutions in conformance with the wall boundaries.
Unlike the solution philosophies of a direct numerical simulation (DNS) or a Reynolds-
averaged Navier–Stokes (RANS), the large-eddy simulation (LES) methodology centers on
the fact that two spatial operations are formally necessary to arrive at a generalized formu-
lation. Besides the coordinate transformations, one must spatially filter the mathematical
system as well. The recommended order-of-operations is to transform the full-resolution
equation system first, then filter the result. This sequence logically conforms the filter oper-
ation to the curvilinear field lines, but requires representing the coefficient metrics as filtered
quantities. That demand is met implicitly through their numerical approximation. Numeri-
cal treatment of the metric coefficients is actually preferred over an analytical evaluation to
minimize the associated truncation error.

Ghosal [26] recommends a grid-filter width larger than the local grid spacing to main-
tain dominance of the SGS model over the dispersive truncation error of an upwind-biased
scheme for the convective derivatives. This advice demands development of a useful fil-
ter for explicit evaluation of the Leonard term. Because the grid spacing is nonuniform
in the physical domain, explicit spatial filtering will cost more, relative to simple geome-
tries, especially when evaluating the SGS field. Herein, grid-filtering in the computational
space proved to be comparatively cheaper than in the physical domain with no discernible
differences in the respective damped spectral energies.

For simple geometries, it is well known that the truncation error of a low-order approxima-
tion of the convective derivatives will overwhelm the Leonard term. Using a DNS database of
the near wake of a circular cylinder, this presumption was verified in the computational space
as well. Meaningful contributions from the Leonard stress in transformed coordinates are
important only when the neighboring derivatives are approximated by high-order-accurate
schemes. This fact also includes high-order treatment of the metric coefficients.

Finally, validating a curvilinear coordinate formulation for the SGS model is an issue
for future work. Currently, Smagorinsky’s dynamic form is the most popular for general
applications involving complex turbulent flows. Its implementation requires test-filtering
the resolved field which permits energy backscatter physics from the modeled scales to
the finest resolved scales. However, previous studies conclude that Smagorinsky’s model
correlates poorly with the exact stress [23]. A family of alternatives have been proposed,
but the related mixed model (similarity plus Smagorinsky relationships) probably shows
the most promise. For practical geometries, this model appears to be CPU-intensive, due to
its mathematical complexities.
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