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A generalized curvilinear coordinate formulation for the large-eddy simulation
(LES) that centers on the fact that two spatial operations are necessary to complete
the derivation is proposed. The recommended order of operations is to transform
the full resolution system prior to filtering. This sequence rationally directs the
filter operation along the curvilinear lines, thereby facilitating explicit evaluation
of the Leonard stress and its isolation from the relative errors associated with the
finite-difference approximations of the convective derivative. Representing the trans-
formation metrics as filtered quantities in the formulation is justified through their
numerical approximation. The generalized LES formulation was tested using direct
numerical simulation results of the circular cylinder near wake a-R400. No
discernible differences were detected in the spectral energies of the turbulent fluctu-
ations by filtering in either the physical domain or the transformed space. However,
the latter filtering scheme was considerably cheaper. In the transformed space, high-
order numerical approximations are required for the convective derivatives to inhibit
overshadowing of the concurrent contributions by the Leonard stress at all wave-
numbers.

I. INTRODUCTION

The recent gain in popularity of the large-eddy simulation (LES) as a useful computatic
fluid dynamics (CFD) approach to understanding turbulence rests principally on the r:
advancements in supercomputer technology, as well as the encouraging developments
methodology itself. The LES philosophy is founded on resolving (computing) the large-st
energy-dominate structures of the turbulent motion while modeling only the remaining fi
scale eddies which tend toward homogeneous and isotropic characteristics. Demarec
between the resolved and modeled turbulent scales is formally instituted by spatially filte
the Navier—Stokes equations. In many finite-difference computations, however, this filts
actually implemented implicitly through the grid’s resolution. The local filter width in the:
simulations is equivalent to the local grid spacing. Those length scales lying beneatt
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grid’s resolution comprise the subgrid scales (SGS) of the turbulent field. To close the |
formulation, a representative model is designed for the SGS field which usually embo
most of the equilibrium range of the turbulent spectral energy.

Historically, most LES applications possess a certain commonality in that the res;
tive topologies are geometrically simple. A few notable exceptions include Schumann
Krettenauer [1], who simulated turbulent convection over a sinusoidal undulated terra
an infinite Rayleigh number, and Lund and Moin [2] (as well as Breuer and Rodi [3]), w
resolved the Reynolds stress statistics in the spatially evolving boundary layers alon
upper and lower walls of a concave-surface channel. In addition, a thorough numerical <
of the cylinder wake using a compressible flow form of the LES equations was comple
by Beaudan and Moin [4] at a moderate Reynolds number of 3900, based on the ¢
der diameter. Although these exceptions required coordinate transformation of the |
Cartesian form of the governing LES equations to accommodate a boundary-fitted gr
the wall curvature, no formal treatment of the transformation operation nor the accon
nying metrics was addressed.

The present work aims to formally document a fundamental generalized curvilin
coordinate formulation of the LES equations applicable for practicable geometries. Bec
the derivation requires two spatial operations (the filter and the coordinate transformat
the curvilinear form cannot be acquired in a unique manner. By contrast, an orde
operations does not arise when transforming a Reynolds-averaged Navier—Stokes (R
set of equations (or, for that matter, a direct numerical simulation system of equati
because only that single spatial operation in needed to arrive at the final generalized
The question to be answered in the present derivation is whether one should filter the
resolution equations before or after the coordinate transformation. This order espec
effects implementation of the SGS model and even more importantly mixed mode
concepts where the Leonard term is evaluated explicitly.

Two procedures will be considered herein for obtaining a LES curvilinear coordin
form. Each approach will operate on the Navier—Stokes (NS) equation system of ai
compressible flow. The first procedure filters the Cartesian coordinate system prior t
transformation. The order of operations respectively appears as

NS (Cartesianx Filter = LES (Cartesian)y> Transform = LES (curvilinear).

This path is customarily taken when deriving a RANS type formulation but with the spa
filter operation replaced by Reynolds time-averaging. An alternative progression to
path involves reversing the order of operations. This second derivation proceeds as

NS (Cartesian} Transform = NS (curvilinear)= Filter = LES (curvilinear)

such that the filter operation is now sensibly directed along the grid lines. To justify t
latter choice, satisfaction of the commutative property is required between the filtering
the transformed form of the differentiation. Since the transformations occur before fil
ing, the accompanying metrics are depicted as filtered quantities. This viewpoint req
explanation and opposes the unfiltered representation of the first approach, where the
of operations is reversed. The following work will also show that the second choice gre
facilitates implementation of the final LES equations as well as explicit evaluation of
Leonard term.

Mathematically, the two paths just mentioned differ only by their formal appearar
which is centered on the definition and evaluation of the transformation metrics. At
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outset, the resultant formulations reveal very little regarding their intrinsic separatior
the large- and small-scale eddies. We must therefore understand the underlying m
nism of filtering along the curvilinear lines in either the physical domain or transform
space as well as interpret the physical significance of the transformation operation ol
resolved and modeled fields. Thus, the primary objectives of this work include; formulat
and interpreting a LES methodology suitable for incompressible flows in complex geol
tries (Section 2), designing a numerical filter kernel for explicit evaluation of the Leon:
term (Section 3), and “a-priori” testing of the new LES formulation using a germane datat
(Section 4). Finally, a few important closing comments are presented regarding the turbt
eddy viscosity models commonly used for the SGS field (Section 5).

II. CURVILINEAR COORDINATE FORMULATION

To derive a generalized curvilinear coordinate formulation of LES equations for
steady incompressible turbulent flows, we begin with the Cartesian system comprisin
continuity and the Navier—Stokes equations. In nondimensional primitive variables,
system appears as

daU;

Continuty — =0 1
Yo% 1)

ou; ouju Bp 1 92y
Momentum — = — , 2
ot + 0X;j E)xJ * Redx;dX; @

where Re symbolizes the Reynolds numberand = 1, 2, 3) andp represent the velocity
and pressure quantities, respectively. Solving these equations necessitates resolutior
the spatial scales of the turbulent field which is classified as a direct numerical simulg
(DNS). One can now choose to either filter this DNS system, followed by a transformat
operation, or vice versa to acquire a LES formulation in generalized curvilinear coordine
The resultant equations differ only by their mathematical depiction of the metric quantit
We will first examine the former choice which is hereinafter referred to as the “conventio
approach.”

A. Conventional Approach

Under the conventional approach one derives the basic governing equations of the
in Cartesian coordinates first, then transforms them to a curvilinear coordinate framev
(€%). This order of operations produces LES equations of the form

3. /GE U

%:o @3)
000 OVEESUIU  9./GESD  9./G Gbitii ke Ui
T dgk T gEk * Bl Reaé"[“f 355] )

Each term in these equations is shown in its nondimensional strong conservation-law
[5]- The coefficientg;')'(‘J (as well asg*‘) and./g denote the contravariant metrics and the
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Jacobian of the transformation, respectively. Inasmuch as the filter operation is perfot
prior to any coordinate transformations, only the flow quantities are treated as filte
(designated by the overbar). Consequently, the types of filter functions are identics
those commonly found in the literature for Cartesian coordinate systems [6]. Moreo
special concern about satisfying the commutative property between the filtering anc
differentiation is not necessary. The SGS stress tenggig defined byri; = uju; — UjG.

Its contravariant density formit) appears as

o = JOE[ (U0 — UjT) (5)

which is directed along the curvilinear grid lines.

In the above transformed system, the varying filter width Y is assumed to be equal to
the local grid spacingAy). Thus, the resolved and filtered turbulent scales are identic
If As > Ag, filtering the convective term introduces additional terms representative of
intermediate turbulent physics lying between the respective filtered and resolved fields
SGS stressX is replaced by the tensor

T* =Lk — Q¥ (6a)

where
LK = G&yx (@0 — Gl (6b)
Qf = & (T + Tiuj + ujuj). (6¢)

Again, both tensoré X and QF are conservative transformations of their Cartesian cou
terparts. The instantaneous velocities are decomposed into their reslyechd mod-
eled (4) elements with the overbar still denoting the filter operation. The Leonard te
(LK) is evaluated explicitly, whereas a model must be devised for the new SGS te
(Q¥) which now consists of the crosai(i; + Giu;) and Reynolds stressui{r;)
tensors.

There are many difficulties, however, when numerically implementing the above L
system over boundary-fitted grids in complex geometries, including its assessment o
approximation effects in wave-number space. First, the Leonard term would be cumbers
to evaluate consistently along the curvilinear lines because the filter operation is forn
instituted in the Cartesian coordinate system. The filter kernel itself is improperly defi
with its width especially onerous to determine locally. Moreover, the spectral physics of
Leonard termwould be difficult to isolate from the neighboring attenuation of the convec
term caused by its finite difference approximation.

Second, the absense of the overbar for each metric coefficient implies that they
evaluated exactly thereby vary monotonically. Although their analytical determinat
is certainly possible for strongly controlled grids, the order of the leading term in 1
truncation error of both the first- and second-order derivatives is actually reduced w
compared to that obtained through their difference approximation. This convincing
gument was presented in-depth by Thompsobal. [7] by simply examining the metric
coefficient of the transformed first-order derivative. They showed that the leading t



326 STEPHEN A. JORDAN

of the respective truncation error reduces one order if the metric coefficient is evalu
analytically.

Third, although one can argue that certain monotonic functions can be useful for
mizing the truncation error, enforcing these distributions either locally or globally can
difficult and nearly impossible under an adaptive gridding computation. Vinokur [8] cc
cluded that simple analytic evaluations of the metrics and Jacobian can improve the sol
accuracy only for isolated cases, but that numerical treatment is generally preferred for
complex geometric applications.

To this end, the conventional approach can only be viewed as a useful LES methodc
for complex domains if one ignores these salient drawbacks associated with its impler
tation. Specifically, the filter operation is ill-defined which further complicates spect
analysis of the results as well the numerical approximations. Furthermore, a comparat
lower-order truncation error arises because the final formulation implies that the me
coefficients are evaluated analytically rather than numerically.

B. Alternate Approach

An alternate sequence to the above involves reversing the order of operations which
the LES equations

NG

o 0 0
0/0u | 9JIEXULL 9. /GEKp otk 1 9 0 OU;
ot T a&k o0&k | 98X | Reev [J@gga_s‘] ®)

This second approach transforms the basic NS equations prior to their filtering. Co
quently, the filter operation is now formally administered along the grid lines, where
independent spatial variables are the curvilinear coordinates. The filter operates on
the flow quantity and the metric coefficient. It is important to note that the finite-differen
expressions used for approximating each metric coefficient are separate mechanisms
tial filtering which justify representing them as filtered quantities in the basic formulatic
For the moment, further discussion on this particular topic will be deferred until in the n
section.
The filter operation along the curvilinear grid lines can be expressed as

9EN(ER) = / HER — e%gE™)p E™) de, )

where H (£X — £%) is the homogeneous filtering kerngl(¢¥) is the metric coefficient,
andg (£’%) is an arbitrary turbulent quantity. The coefficigit’®) transformsp (¢’%) to the
curvilinear coordinate system such that their product becomes the contravariant counte
of the quantity. Filtering can occur in either the physical domain or the computational s
with both applications having characteristic filter widths defined by the local metric coe
cient (see Fig. 1). For instance, the grid-filter width along;ithi@es (; is constant) in the
physical domain is the local metric coefficieg§i;. Commutation between filtering and
the finite difference approximations along nonuniform grid spacing was argued by M
and Kim [9]. They satisfied this property by treating their second-order central schem
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FIG. 1. Filtering along the curvilinear lines: (a) physical domain; (b) computational space.

a sectional box filter kernel applied locally at each computational point. However, Ghe
and Moin [10] later noted that filtering an arbitrary quantity in the physical domain L
der nonuniform spacing theoretically violates the commutative property between the f
operation and the differentiation. In their analysis, the filter kernel was considered tr:
formed rather than the flow variable. They concluded that the associated error will
contaminate the methodology, however, if the numerical approximations are no higher
second order.

With the filter kernel herein defined in curvilinear coordinates, one can easily show
the differentiation and the filtering commute for each transformed term in the computatic
space. Consider, for example, the one-dimensional differentiation of (9) as
d[g(i);(é)] =/d[H(i§ é)]g(s/)¢(€/) de’, (10)

where the filter widthA = §¢ = 1. Integration by parts will prove that

dlg&)¢ )]  d[gE)e(&)]
dg B dg

wherex andg define the geometric limits of the space. Thus, filtering and the differentiati
commute in the computational space with the stipulation that the te(mgp («) and
a(B)¢(B) (or their difference) vanish at the boundaries.

The SGS stress field shown in Eq. (8) assumes that the filter operates implicitly thrc
the spatial resolution of the implemented griti{(= Ag). As noted earlier, those scales
captured by the grid spacing hold all the resolved portion of the turbulence. This viewp
can be theoretically interpreted as applying a sharp cutoff filter along the curvilinear li
in wave-number space such that the separation of the resolved and modeled fields be
distinct. The Leonard term is eliminated & u;) and the SGS field is defined as

+ HE —o)g@e¢ (@) —HE - BgB¢B), (11)

o = JOEFU U — /GEFuj ;. (12)

This field represents the fine-scale turbulent eddies along the curvilinear grid lines w
requires derivation of a physics-based model.

Before proceeding further, the contravariant velocity components can be introduce
simplify the LES equations. Moreover, each metric coefficient can be declared filte
and independent from its respective resolved turbulent quantity because the metrics s
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be conceived as smooth functions which are evaluated numerically and devoid of
fluctuations. The resolved contravariant velocity compondut$ are defined as

Uk = VoK (13)

becaus€,/0)' = (E)‘fi)/ =0. Substituting this expression into Egs. (7) and (8) gives

duk
i 14
P 0 (14)

9/00 | oUKG  9GEKP | 9ok 1 9 [—=—00;
= T id B ) 1
ot T ok aek T aek T Reser V99 5| (15)
wherec is expressed as

o = Ukgy — Uku;. (16)

This tensor has an identical form to its Cartesian analogue, but it requires an exch
of variables to introduce the contravariant velocity components in the definition. Fina
introduction of the contravariant velocity into the Leonard term yields

LK = Uk, — UG, (17)

which can be easily evaluated explicitly along the curvilinear lines in either the physi
domain or contravariant space using an appropriately designed filter.

Ill. CURVILINEAR LINE FILTERING

Although the filter operation is directed along the curvilinear grid lines, we can still arg
for the same kernel functions that are used with Cartesian coordinate systems, excep
the independent variables are the curvilinear coordinates. The most common function
those of the sharp cutoff, Gaussian, and box filters. We will first direct our attention to
implicit filtering along the curvilinear lines that is associated with numerical evaluati
of the coefficient metrics, followed by application of a box or Gaussian filter for explit
evaluations of the Leonard term.

A. Implicit Filtering of the Metric Coefficients

As noted earlier, if the transformation operation is performed prior to filtering, th
each metric coefficient should be considered as a filtered quantity. This representati
justified herein due to the implicit filtering inherent in evaluating each coefficient by fin
difference schemes. For example, numerical approximation of the metric coeffigieynt
second-order central differences carries a builtin box-type filter of unit wigtiihe exact
relation between this differencing scheme and the box filter is

XE+D-XxE-1 8 [1 [ s
o ~ . ‘E{E/g_l x@ws}—g, (18)
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FIG. 2. Attenuation of the Fourier amplitudes of three stretching functions caused by finite difference
proximations of the respective metric coefficients: (a) exponential; (b) hyperbolic sine; (c) hyperbolic tanger

where the integral form of the box filter is shown in the parentheses. This filter will damj
the spectral components of the dependent Cartesian coordi)atewave-number space
(k), according to the response functi®tk) = sin(k)/k.

To illustrate the attenuation effect of the difference approximation in (18) on the me
coefficients, we will examine three monotonic expressions which are most commonly
to stretch the grid: the exponential, hyperbolic sine, and hyperbolic tangent functions
(i.e.,x(&) = e*%). Attenuation of the respective Fourier amplitudes of the physical coor:
nate due to a two-point approximation of its derivatkyes shown in Fig. 2 as curve (a); the
maximum scaled wave-numbet £ 27n/N) of each function ist, N + 1 is the number
of grid points, and kX n < N/2. In this figure, the exact Fourier amplitudes (no filtering
of each distribution are designated by curve (c). One can see that significant attenuati
the spectral components begins at very low wave-numbers independent of the grid |
distribution. Atk =7/2, for example, each Fourier amplitude is damped by about 34
Curve (b) illustrates the damping effect caused by a fourth-order-accurate central sch
At a minor cost of additional CPU time, one can delay significant damping of the Foul
amplitudes of the Cartesian coordinate until higher wave-numbers.

Higher order difference approximations and compact schemes will still further re
realizable attenuation of the spectral amplitudes of the physical coordinate, but com
elimination is not achievable. Thus, considering each metric coefficient as a filtered vari
in the alternate approach is justified, due to the implicit spatial filtering that occurs throi
its numerical evaluation.

B. Explicit Filtering

WhenA¢ > Ag, the Leonard term of (17) arises in the alternate LES formulation tt
must be evaluated explicitly in the computation. Afilter can be designed for this purpose
is executed in either the physical domain or the computational space. As previously N
filtering in the physical domain must be in accordance with a second-order discretizatic
the governing terms to minimize the commutation error. Although the filter in the physi
domain is slightly more costly to apply (due to the nonuniformity of grid spacing), bc
filter kernels have similar forms. The primary difference between the two filter operati
lies not in the filter definition itself but in the variable being filtered. In the computatior
space, pre and posttransformations are required so that concerns arise about its relativ
cost and energy conservation properties. Furthermore, one should exert caution for h
stretched grids because the filtered metric coefficient drastically dampens the contrave



330 STEPHEN A. JORDAN

form of the filtered flow variable. In this section, two kernels are examined of the box fil
(one for each domain) that essentially implements volume-averaging [11]. These kel
will then be tested in the following section to study their relative damping effects on 1
turbulent spectral energy.

The basic kernel of the box filter has the conservative functional form

+ o). if AT i_ gk +
H@k’é,k):{z/w. TAD. AT2 <l -8 < AT/ 1)

0, otherwise

where A; is the local filter width in the curvilinear directiog®. Direct application of
this filter to an orthogonal boundary-fitted grid in the physical domain ghes: g;; and
A? =gy, in the & andy directions, respectively (see Fig. 1). In the computational spac
A =1 everywhere because the associated grid is completely uniform.

The analog of discrete volume averaging along a curvilinear line in the computatic
space has the form

¢i = ¢ + S/2[¢i11 + di—1 — 2¢i], (20)

whereSis the filter coefficient. To ensure that this operation attenuates the Fourier elem
without a phase change, the filter coefficient is simply set/@®[12]. Damping the high
wave-number spectral amplitudes of the metric coefficients using this operation dep
strongly on the local degree of stretching. To illustrate this point, consider the filter opera
rewritten as

— Sd?p

=6+ =, 21
where the second-order term is consistent with second-order discretization. Using the
vious three monotonic functions, the filtered metric coefficientelative to its unfiltered
component becomes

Xe = X (1+ B), (22)
where the smoothing parametgis defined as

B =Sd"/2q (23)

and the variablg denotes the distribution function (i.€,= X = «€**). The relative de-
gree smoothing of the metric coefficients using these functions is listed in Table | for
extreme cases of grid stretching. The first case restricts the grid stretching to minimize
truncation error of standard second-order central differences applied to the metric cc
cients. The respective smoothing is minimal for all three distributions, suggesting that
resultant damping of the spectral amplitudes of the metric coefficients by the operatic
(20) is negligible. But this stretching restriction is unrealistic, and it is rarely encounte
throughout most boundary-fitted grids. The other case illustrates strong damping whel
subsequent grid point spacing is doubled. Although this stretching exceeds that allow
by the truncation error of most finite difference schemes, the hyperbolic functions apj
least affected by filtering. These particular monotonic distributions have been identifie
the best overall choices for resolving bounded shear layers [8].
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TABLE |
Smoothing Effects of Box Filtering

Degree of grid stretching

(Xe)2/(Xe)1 =1+ (X)1 (Xe)2/(Xe)1=2

Function

aE/N) @ B « P

exz(:pi/g—l 0.42 0(10® 1.39 oM

o 1.24 0(10) 1.92 00
1— lnhkaog/N) 0.92 0(10%) 126 010

Note. (x;); signifies local grid spacing at the first poigtis the distribution function,
andN is the total number of pointd\ = 2).

Most importantly, with strict control over excessive grid stretching the implications
smoothing the metric coefficients (through explicit filtering) does not alter the basic phys
processes intrinsic in the LES computations. For instance, the Leonard term provides
stantial assistance towards the forward scatter of energy from the finest resolved scales
coarsest subgrid eddies. For uniform grid spacing, spectral analyses of the energy ca
process to quantify the Leonard term contributions is simply illustrated at the discrete w.
numbers. This same process occurs along the curvilinear lines at modified wave-nun
because the respective wave-lengths have been smoothed. Although we expect the
ences to be minor, the extent depends largely on the degree of relative stretching. In
of the turbulent energy, the spectral amplitudes are damped further by a factor proport
to 8.

In the physical domain, we can locally account for the nonuniform grid spacing
introducing a weighting function (a),

¢i = ¢i +S/(L+)[¢iy1+agi-1— L+ a)i]. (24)
The magnitude of the corresponding response fund¢iRgk)| is
IRK)| = 1/2(1 + a){[(1 + a)(L + cosk)]? + [(L — &) sink]?}"? (25)

which dampens all Fourier components except at wave-nuibed. As illustrated in
Fig. 3, the effect of the weighting function is additional damping of the high wave-numl
spectral components. Expanding this filter to three dimensions (3D) produces a 27-|
operator of the form

D jk = Di jk + Dil(L+a)(Di 11k + bPij_1k) + L+ b)(Piyrjk +adi-1x)]
+ Do[(1 + @) (Pi, j+1kx1 + DDi 1 k1) + A+ D) (Piyrjrr1 + AP —1jke1)]
+ Do[®ig1 i1k FAPi_1jrak +PDPigrj1k +abdi_1j_1x)]

+ D3[ @41 jriker +aPi—1 jy1ker + DPiy1j_1ke1 +abDi_1j_1k+1)], (26)
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FIG. 3. Additional damping of a filtered quantity caused by local weighting.

where

D; = S(1—92/2(1+a)(1+b)
D, =S1-9/20+a)l+b)
D3z = S¥/2(1+a)(1+b).

In the physical domain, the grid’s nonuniformity is embedded in the neighboring parame
a=+/0{1/9.; andb=/03,/9, in the & andn directions, respectively. In the comput-
ational space, these parameters are unit-valued. No weighting parameter reflects differ
in the spanwise spacing,(¢ coordinates) because itis assumed to be uniform for the pres
application.

Finally, one could easily select a Gaussian functional instead of the box kernel to expli
filter the contravariant components. When administered in the computational space,
filter would have the same basic form as the one used by Leonard [6], but with unit fi
width. The Gaussian filteiG*) in this application appears as

2\ 3/2 ,
Gk = (6"‘ > e Bl £ 27)
4

with @ =1/2. Like the box filter, attenuation of all the spectral elements of the transforrr
variable will occur except at the corresponding zeroth wave-number. However, the en
loss is generally less severe when compared directly to that resulting from the box filte

IV. APRIORI TESTING AND DISCUSSION

In this sectiona priori tests are performed on a turbulent flow for the purpose of inves
gating the relative damping of the spectral components in the proposed formulation ar
further decide which grid-filter is best suited for computing the Leonard term. These ti
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reflect DNS results collected of a circular cylinder wake at a subcritical Reynolds nurm
of 3400, based on the cylinder diamet&r)( This particular Re was chosen because tt
experimental flow visualization results of Wei and Smith [13] showed little developmen
the fine-scale spanwise cellular deformation of the shed Strouhal vortices. This observ
selectively eased the spanwise resolution requirement of the structured grid. Statisti
the Strouhal numberS) of this flow is close to 0.2 [14]S = fU/D, whereU is the
freestream velocity and is the shedding frequency of the primary vortices.

To acquire the DNS results of the cylinder wake, the fractional-step formulation of Jor
and Ragab [15] was recast into generalized curvilinear coordinates. Their technique
extension of the DNS finite-difference scheme of Rai and Moin [16] to a semi-stagge
discretization molecule. Third-order upwind-biased differences approximate the conve
derivatives in the wake streamwise and transverse directiomdifies) to inhibit aliasing
and stabilize the computations in the downstream coarse grid regions near exit. The pel
spanwise components are approximated by a fourth-order accurate compact scheme
A Runge—Kutta procedure is used to time-advance the flow because of its strong nume
stability even under inviscid conditions. The viscous terms are time-split by the Cral
Nicolson scheme and spatially approximated by conservative finite-volume differen
The overall accuracy of the solutions are second order in both space and time.

A. Grid Resolution and Boundary Conditions

For the turbulent cylinder wake, the finest dissipation scales occur within the vortex
mation region. To ensure sound resolution of this region, various curvilinear grids w
tested for increased refinement until the relative prediction of Kolmogorov’s microscale
below 2%. The final grid, along with the external boundary conditions, are given in Fig
An exponential interpolation function was used to uniformly clustentlires toward the
cylinder surface. The radigllines emanated normally from the cylinder periphésyand
were uniformly distributed circumferentially around the cylind&s¢ 0.008r). This con-
trol produced a single-valued covariant metric coefficient along these concentric lines w
further facilitated spectral analyses of the box and Gaussian filters. The spanwise resol

Exit Conditions

F_c"ﬁt_’ &0 gk = Vg™ Pg_F:‘
e
241x241x64 grid

FIG. 4. Grid line distribution, external boundaries, and flow conditions used for direct numerical simulat
of cylinder flow at Re= 3400.
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FIG.5. Comparison of the mean pressure coefficient from the DNS results to the experimental data rep
by Norberg [20].

was based on the empirical relationship of Mansesl.[18] for the wavelengthi(;) of the
three-dimensional disturbances;y D ~ 20Re /2, Using 64 points over length, the DNS
computation gave approximately seven points for resolving each disturbance. More
this spanwise resolution produced an accurate prediction of the base pressure coeff
immediately downstream of the cylinder (see Fig. 5). Finally, the combined transforn
forms of the continuity and Euler equations were found satisfactory for applying a velo
condition to exit the shed vortices with minimum distortion [19].

To illustrate the resolution capacity of the grid, phase-averaged results (at the shec
frequency) of Kolmogorov’'s microscaleq) are shown in Fig. 6. Homogeneous condition:

FIG. 6. Phase-averaged DNS results of Kolmogorov's microscale in cylinder wake-a3R@0; contours
increment by 0.0005.
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TABLE Il
Kolmogorov Microscale and Grid Density
in Kolmogorov Units at x/D =5

n§/Dx10  n§/Dx10  /Gu/n§  JO2/n5  Az/ng
9.84 14.53 13.74 7.38 4.99

Note.n§/D is the experimental measurement at=R&900 [21]
scaled to Re= 3400 and;]/D is the DNS computation at Re3400.

were assumed in the spanwise direction. In the figyuyés scaled by the cylinder diameter
leading to the definition

na/D = (1/Re{S)"?, (28)

where|S| denotes the magnitude of the transformed resolvable strain-rate tensor. As
pected, the finest turbulent scales were computed within the vortex formation reg
0.004< nq/D < 0.01. Conversely, negligible turbulent levels are indicated outside the ne
wake and in the upstream flow. The phase-averaged results clearly show an incree
ng/D toward the primary vortex cores. This result agrees qualitatively with our und
standing that the shed vortices, which are turbulent, have viscous cores which tend tov
relaminarization.

Within the vortex street, specific evidence to demonstrate the grid’s ability to adequa
resolve the dissipation scales is shown in Table II. At 5 diameters downstream, the table
the mean experimental measuremgitD [21] and the present DNS resujf/D, along
with the local grid densities in experimental Kolmogorov units. Note that the experimet
measurements were taken at-R8900, but scaled to the DNS computation assumir
the wake turbulence is homogeneous and isotrogiee?’#). In view of the resolution
requirements discussed by Reynolds [22], the grid densitieg2t=5 were sufficient for
the DNS computation.

The near wake turbulent spectral energy versus streamwise wave-number (bo
Kolmogorov units) is shown in Fig. 7. Ong and Wallace [21] converted their experimer
frequency spectrum to the one-dimensional wave-number spectrum shown in the fi
using Taylor’s hypothesis. Although their profile is specifically taken from the LDV de
atx/D =3.0 andy/D = 0.56, the curve is representative of the entire near-wake regin
Superimposed on the profile are the present DNS results (corrected for the Re differen
r/D =1.54 (formation region) and/D = 5.0 (vortex street), as well as the LES results o
Beaudan and Moin [4] at/D =5.0. Unlike the LES results, neither DNS curve suggests
dampening or dumping of turbulent energy at the higher resolved wavenumbers. Thisr
is probably attributed to the DNS grid supplying 61 and 36% finer spatial resolutions t
the LES grid at the downstream locationsxgD = 1.54 andx/D = 5.0, respectively.

Finally, comparisons of the DNS turbulent statistics within the formation regipP =
1.54) and the vortex stregk /D =4.0) to the PIV data of Lourenco and Shih [4] anc
the LES results of Beaudan and Moin [4] are illustrated in Fig. 8. To account for
difference in Reynolds numbers, both the turbulent means and intensities are scale
the local streamwise defect velocityy]. In view of the measurement uncertainty [4], the
present DNS computations agree favorably with the observations. The transverse turk
intensities show closer agreement to the experimental evidence than the results of Be:
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FIG. 7. A comparison of turbulent energy spectrum versus wavenumber (both scaled in Kolmogorov un

and - - - - present DNS at/D = 1.54 and /D = 5.00, respectively;ooo, experimental data [21kx x«,
LES results [4].

and Moin, who used fifth-order upwind-biasing for the convective derivatives coupled w
a dynamic SGS model. As previously noted, the present DNS results reflect computa
performed over a much finer grid. Given this agreement with the experimental evidence
present DNS results within the formation region were consider satisfactory for subseq
analysis of the box filters and Leonard term of the alternate LES formulation.

B. Explicit Filtering Along the Curvilinear Lines

The higher CPU efficiency and energy-conservation of box filtering in the transforn
space, compared to the results from the physical domain filter (Eq. (26)), is illustrate
Figs. 9a and 9b. Both profiles represent four phase-averaged datasets saved at the
ding frequency, as well as spatial averages in the spanwise direction. The box filters
applied along the line corresponding to the radiug D = 0.69 with filter widths set at
twice the local grid spacing. This particular concentric line lies within the well-resolv
vortex formation region shown earlier. Its end conditions are periodic due to the branch
implemented upstream. Both filters show substantial damping of the spectral éBespy
within the inertial subrange. Notice that no differences in the damped levels are obsen
between each filtering scheme. The expanded profiles (Fig. 9b), that focus on the dissip
range, further emphasize this point. Conversely, the computational cost of the physica
main application is nearly twice that of the computational space, even including the ac
expense associated with the transformation operation. This comparatively lower efficie
of the physical domain filter is attributed to its direct dependence on the local weight
functions.
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C. Leonard Term

When A > Ag, one must ensure that the Leonard term is not masked by a low-or
approximation of the flux derivatives. In particular, if the convective flux is approximat
using three points, then the respective truncation error will be on the same order a:
Leonard term. Inasmuch as the recommended governing LES equations are placed ir
servative form, explicit evaluation of the Leonard stress actually includes approxima
and filtering the metric coefficients. The correct procedure requires transforming each c
ponent to the computational space prior to their filtering. The contributions of the Leon
term relative to the convective flux depend on the smoothing and order-of-accuracy o
respective metric coefficients.

In terms of an energy loss, box filtering the contravariant DNS components is equiva
to a finite-volume second-order approximation of the transformed flux derivatives in
LES computation withA 1 = A gs=2Apns. This analogy is strictly numerical, however,
because the resolved field will dynamically adjust itself to the SGS model over time. W
this understanding, we can still allow a careful look at the relative importance of Leon
term. The procedure is similar to tlepriori tests conducted by Liat al.[23] and others
[24, 25] using a top-hat filter. For instance, Figs. 10a and 10b show the spectral con
nents of the Leonard terin} using either a box or Gaussian filter relative to the resolve
component #; L1 =U%—U# along concentric line/ D = 0.69. The associated metric co-
efficients of the contravariant velocity components were approximated to the second-o
Both figures clearly show that a low-order scheme will prohibit any contributions from t
Leonard stress near the higher wave-number part of the spectrum. The choice of the
kernel does not seem to matter nor does the local grid spacing. Also, an improved fot
order approximation of the metric coefficients leads essentially to the same conclus
These results suggest that high-order finite difference schemes must be used for ap
mating the convective derivatives in the alternate LES formulation to indulge participat
of the Leonard stress near the higher range of resolved wave-numbers.

V. FINAL REMARKS

Difficult geometries are commonplace among most practical applications. Conseque
to compute the respective turbulent physics one must utilize a generalized curvili
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coordinate system to steer the flow solutions in conformance with the wall boundal
Unlike the solution philosophies of a direct numerical simulation (DNS) or a Reynol
averaged Navier—Stokes (RANS), the large-eddy simulation (LES) methodology centel
the fact that two spatial operations are formally necessary to arrive at a generalized fo
lation. Besides the coordinate transformations, one must spatially filter the matheme
system as well. The recommended order-of-operations is to transform the full-resolL
equation system first, then filter the result. This sequence logically conforms the filter o
ationto the curvilinear field lines, but requires representing the coefficient metrics as filte
gquantities. That demand is met implicitly through their numerical approximation. Nume
cal treatment of the metric coefficients is actually preferred over an analytical evaluatic
minimize the associated truncation error.

Ghosal [26] recommends a grid-filter width larger than the local grid spacing to me
tain dominance of the SGS model over the dispersive truncation error of an upwind-bi
scheme for the convective derivatives. This advice demands development of a usefi
ter for explicit evaluation of the Leonard term. Because the grid spacing is honunifc
in the physical domain, explicit spatial filtering will cost more, relative to simple geom
tries, especially when evaluating the SGS field. Herein, grid-filtering in the computatic
space proved to be comparatively cheaper than in the physical domain with no discer
differences in the respective damped spectral energies.

For simple geometries, itis well known that the truncation error of a low-order approxir
tion of the convective derivatives will overwhelm the Leonard term. Using a DNS databas
the near wake of a circular cylinder, this presumption was verified in the computational s|
as well. Meaningful contributions from the Leonard stress in transformed coordinates
important only when the neighboring derivatives are approximated by high-order-acct
schemes. This fact also includes high-order treatment of the metric coefficients.

Finally, validating a curvilinear coordinate formulation for the SGS model is an iss
for future work. Currently, Smagorinsky’s dynamic form is the most popular for gene
applications involving complex turbulent flows. Its implementation requires test-filteri
the resolved field which permits energy backscatter physics from the modeled scal
the finest resolved scales. However, previous studies conclude that Smagorinsky’s n
correlates poorly with the exact stress [23]. A family of alternatives have been propo
but the related mixed model (similarity plus Smagorinsky relationships) probably she
the most promise. For practical geometries, this model appears to be CPU-intensive, c
its mathematical complexities.
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